Методы и функции для работы со списком

Имя	Описание	Пример кода	На экране
min(A)	Наименьший элемент списка. Элементы списка могут	a=[0,1,2,3,4,5]	0
	быть числами или строками, для строк сравнение	print(min(a))	
	элементов проводится в лексикографическом		
	порядке.	T.	
max(A)	Наибольший элемент списка.	a=[0,1,2,3,4,5]	5
		print(max(a))	
sum(A)	Сумма элементов списка. Элементы обязательно	a=[0,1,2,3,4,5]	15
• • • • •	должны быть числами.	print(sum(a))	[2 5 7 2 2]
A.sort()	Сортирует список (по возрастанию)	a=[5,2,7,9,8]	[2,5,7,8,9]
		a.sort() print(a)	
A.sort	Сортирует список (по убыванию)	a=[5,2,7,9,8]	[9,8,7,5,2]
(reverse=	сортирует список (по уобіванию)	a-[3,2,7,3,8] a.sort(reverse=True)	[3,0,7,3,2]
True)		print(a)	
A.reverse()	Разворачивает порядок в списке	a=[5,9,7,8,2]	[2,8,7,9,5]
7616.66()	тазгора торидок в отмене	a.reverse()	[=,0,7,3,0]
		print(a)	
x in A	Проверить, содержится ли элемент в списке.	a=[5,9,7,8,2]	True
	Возвращает True или False . [x not in A то же самое,	print(5 in a)	False
	что not(x in A).]	print(6 in a)	
A.index(x)	Индекс первого вхождения элемента х в список, при	a=[2,5,8,7,4,6]	3
	его отсутствии генерирует исключение ValueError.	print(a.index(7))	
A.count(x)	Количество вхождений элемента х в список.	a=[1,5,2,7,5,6]	2
		print(a.count(5))	<u> </u>
A.append(x)	Добавить в конец списка А элемент х.	a=[5,2,7,9,8]	[5,2,7,9,8,12]
		a.append(12)	
Λ :maou±/: ν\	Detablish a control A control of the control of	print(a)	[[2 7 0 6 0]
A.insert(i, x)	Вставить в список А элемент х на позицию с индексом і. Элементы списка А, которые до вставки	a=[5,2,7,6,8] a.insert (3,9)	[5,2,7,9,6,8]
	имели индексы і и больше, сдвигаются вправо.	print(a)	
B=A.copy()	Возвращает копию списка (В копия А! Если В=А, то В	a=[5,2,7,6,8]	[5,2,7,6,8]
2 /copy(/	будет клон А и при изменении А будет меняться и В	b=a.copy()	[3,2,7,0,0]
	2,113	print(b)	
A.extend(B)	Добавить в конец списка А содержимое списка В.	a=[1,2,3,4,5]	[1,2,3,4,5,2,4,6]
		b=[2,4,6]	
		a.extend(b)	
		print(a)	
A.pop()	Удалить из списка последний элемент, возвращается	a=[5,2,7,6,8]	8
	значение удалённого элемента.	a.pop ()	[5,2,7,6]
		print(a)	
A.pop(i)	Удалить из списка элемент с индексом і,	a=[5,2,7,6,8]	[5,2,6,8]
	возвращается значение удаленного элемента. Все	a.pop (2)	
	элементы, стоящие правее удаленного, сдвигаются влево.	print(a)	
A.remove(x)	Удаляет первое вхождение элемента х. Если	a=[5,2,7,5,8,5,6]	[2,7,5,8,5,6]
A.I CIIIOVE(A)	элемента х нет в списке, то получаем ошибку во	a=[3,2,7,3,8,3,6] a.remove(5)	[2,7,3,0,3,0]
	время выполнения.	print(a)	
A. clear()	Удаляет все элементы в списке	a=[5,2,7,5,8,5,6]	[]
V		a.clear(5)	
		print(a)	
		` '	

Задачи по теме «Одномерные массивы» Часть 1

- 1 Дан массив целых чисел. Напечатать:
 - 1.1 Четные элементы
 - 1.2 Нечетные элементы
 - 1.3 Положительные
 - 1.4 Неотрицательные
 - 1.5 Кратные 7
 - 1.6 Оканчивающиеся на 4
 - 1.7 Элементы с четными или нечетными номерами
 - 1.8 *****Положительные и оканчивающиеся на 5
 - 1.9 *****Отрицательные и кратные 3
 - **1.10 ******* Оканчивающиеся на 5 и кратные 3
- 2 Дан массив целых чисел.
 - 2.1 Каждый отрицательный элемент заменить на его абсолютную величину
 - 2.2 Все элементы, кратные числу 10, заменить нулем.
 - 2.3 Все нечетные элементы увеличить вдвое, а четные уменьшить вдвое.
 - 2.4 Все элементы с нечетными номерами увеличить на 10, с четными уменьшить на 10
 - 2.5 Все элементы, оканчивающиеся на 5 заменить на 555.
 - 2.6 *****Все элементы меньшие последнего уменьшить на первый элемент.
 - 2.7 *****Все элементы меньшие среднего арифметического первого и последнего элементов заменить на 0, остальные на 1.
 - 2.8 *****Все положительные и кратные 3 элементы заменить на 1000.
- 3 Дан массив целых чисел. Найти количество:
 - 3.1 нечетных (четных) элементов
 - 3.2 положительных (отрицательных) элементов
 - 3.3 элементов массива, больших (меньших) числа α
 - 3.4 элементов, кратных 5
 - 3.5 элементов, оканчивающихся на 3
 - 3.6 элементов, кратных заданному с клавиатуры числу
 - 3.7 * элементов массива, кратных <math>3 или 7
 - 3.8 *элементов принадлежащих промежутку от a до b (a и b вводятся c клавиатуры b > a).
- 4 Дан массив целых чисел. Найти сумму:
 - 4.1 всех элементов
 - 4.2 нечетных (четных) элементов
 - 4.3 положительных (отрицательных) элементов
 - 4.4 элементов, кратных заданному числу
 - 4.5 элементов массива, кратных а или b
 - 4.6 элементов массива, значение которых не превышает 20
 - 4.7 элементов массива, больших числа а
 - 4.8 элементов массива с четными номерами
 - 4.9 элементов массива с нечетными номерами
- 5 Дан массив. Определить:
 - 5.1 Максимальный и минимальный элементы

- 5.2 Индексы минимального и максимального элементов
- 6 *Найти количество пар "соседних" элементов массива (и вывести их)
 - 6.1 являющихся четными (нечетными) числами
 - 6.2 оканчивающихся на 5
 - 6.3 кратных 3
- 7 Вывести на экран элементы:
 - 7.1 которые больше (меньше) своих "соседей", т.е. предшествующего и последующего (локальный максимум, минимум)
 - 7.2 Найти минимальный (максимальный) из локальных максимумов
 - 7.3 Найти минимальный (максимальный) из локальных минимумов

Часть 2 (методы и функции списков)

- 8 Дан массив.
 - 8.1 Определить. На сколько максимальный элемент больше минимального
 - 8.2 Найти количество максимальных (минимальных) элементов массива
 - 8.3 Найти количество элементов по значению между максимальным и минимальным
 - 8.4 Вывести элементы находящиеся, между 1-м минимальным и последним максимальным
 - 8.5 Поменять местами второй и пятый элементы
 - 8.6 Поменять местами т-й и п-й элементы
 - 8.7 Поменять местами максимальный и минимальный элементы
 - 8.8 Поменять местами третий и максимальный элементы
 - 8.9 Поменять местами первый и минимальный элементы
- 9 Удалить из массива:
 - 9.1 k-й элемент
 - 9.2 первый (последний) максимальный элемент
 - 9.3 первый (последний)минимальный элемент
 - 9.4 все элементы, начиная с n1-го по n2-й (n1≤n2)
 - 9.5 первый отрицательный элемент (если отрицательные элементы в массиве есть)
 - 9.6 последний четный элемент (если четные элементы в массиве есть)
 - 9.7 *все отрицательные элементы
 - 9.8 *все элементы, большие данного числа п
 - 9.9 *все четные (нечетные) элементы
 - 9.10 *элементы, стоящие на четных (нечетных) местах
 - 9.11 *элементы, принадлежащие интервалу (интервал задается с клавиатуры)
- 10 Удалить из массива все повторяющиеся элементы, оставив их первые вхождения, то есть в массиве должны остаться только различные элементы.
- 11 Дан массив [12,34,48]
 - 11.1 Вставить в массив на четные позиции соответствующие четные числа
 - **0**, 12, **2**, 34, **4**, 48, **6**
 - 11.2 Вставить в массив на нечетные позиции соответствующие четные числа 12. **1**. 34. **3**. 48. **5**
- 12 * В массиве с числами из отрезка [-100,100] найти:
 - 12.1 *Максимальный из элементов массива с четными индексами
 - 12.2 *Максимальный по модулю элемент в массиве
 - 12.3 *Номер минимального по модулю элемента массива
 - 12.4 *Изменить знак у максимального по модулю элемента массива.

Минимальный элемент массива при этом не определять.

- 12.5 *количество элементов, значение которых больше среднего арифметического минимального и максимального элементов массива, и напечатать их.
- 12.6 *Максимальный отрицательный элемент массива с числами [-100,100]
- 12.7 *Минимальный положительный элемент массива с числами [-100,100]
- 12.8 *Минимальный четный элемент
- 12.9 *Максимальный кратный 5 элемент
- 12.10 *Второй максимальный (минимальный) элемент
- 13 Упорядочить массив по возрастанию (убыванию) значений элементов методом пузырьковой сортировки
- 14 Упорядочить массив по возрастанию (убыванию) значений элементов методом выбора
- 15 Вывести на экран 3 самых наименьших и 3 самых наибольших элементов массива
- 16 Дан массив из четного числа элементов. Поменять местами:
 - 16.1 его половины
 - 16.2 первый элемент со вторым, третий с четвертым и т.д.
- 17 его половины следующим способом: первый элемент поменять с последним, второй с предпоследним и т.д.
- 18 Найти элемент, наиболее близкий к среднему значению всех элементов массива.
- 19 *Поменять местами первый отрицательный и последний положительный элементы массива. Учесть возможность того, что отрицательных или положительных элементов в массиве может не быть.

Часть 3

- 20 Дан массив. Скопировать все его элементы в другой массив такого же размера:
 - 20.1 в том же порядке расположения элементов
 - 20.2 в обратном порядке расположения элементов
- 21 Дан массив. Переписать его нулевой, второй, четвертый и т.д. элементы в другой массив такого же размера:
 - 21.1 расположив элементы на тех же местах, что и в исходном массиве
 - 21.2 расположив элементы подряд с начала массива
- 22 Даны два массива одного размера. Получить третий массив, каждый элемент которого равен:
 - 22.1 сумме элементов с одинаковыми номерами в заданных массивах
 - 22.2 максимальному из элементов с одинаковыми номерами в заданных массивах
 - 22.3 равен 1, если элементы заданных массивов с тем же номером имеют одинаковый знак, и равен нулю в противном случае.
- 23 Из элементов массива А, заполненного целыми числами, сформировать массив В того же размера по правилу: четные элементы массива А удвоить, нечетные оставить без изменения.
- 24 *Значения массива сдвинуть циклически вправо на к позиций.
- 25 Разложить положительные и отрицательные элементы по разным массивам
- 26 Найти количество различных элементов в массиве. Массив не менять
- 27 Даны два массива. Создать третий массив:
 - 27.1 Из общих элементов двух массивов

- 27.2 Из различных элементов двух массивов
- 28 Дано натуральное число n. Определить количество различных цифр в нем.
- 29 Дано натуральное число n. Определить чаще всего встречающуюся цифру.
- 30 Из массива выбрать элементы, принадлежащие заданному интервалу и поместить их в другой массив (интервал задается с клавиатуры)
- 31 Из массива выбрать все локальные максимумы (минимумы) и поместить их в другой массив
- 32 Определить, какие элементы массива А и сколько раз встречаются в массиве В.
- 33 Преобразовать массив так, чтобы сначала шли нулевые элементы, а затем все остальные
- 34 Найти количество всех цифр (0-9) во всех числах от 1 до 1000. И определить самую частую.
- 35 Собрать все элементы массива в одно число.
- 36 По заданному целому числу X создайте массив из чисел, находящихся в том же десятке. Выведите этот массив. Числа в нём должны быть упорядочены по возрастанию.

Ввод	Вывод
5	[0, 1, 3, 4, 5, 6, 7, 8, 9]
210	[210, 211, 212, 213, 214, 215, 216, 217, 218, 219]

37 По заданному целому числу X создайте массив из чисел, находящихся в той же сотне. Выведите этот массив. Числа в нём должны быть упорядочены по возрастанию.

Ввод	Вывод
5	[5]
213	[203, 213, 223, 233, 243, 253, 263, 273, 283, 293]

- 38 Отсортировать массив натуральных чисел по возрастанию значений последней цифры в записи числа.
- 39 Отсортировать массив натуральных чисел по возрастанию значений первой цифры в записи числа.
- 40 Отсортировать массив натуральных чисел по возрастанию значения количества цифр в записи числа.
- 41 Отсортировать массив натуральных чисел по убыванию значения суммы цифр в записи числа.
- 42 Отсортировать элементы массива натуральных чисел, расположенные на четных местах, по возрастанию, а элементы, расположенные на нечетных местах по убыванию.
- 43 Отсортировать по возрастанию все положительные элементы массива.
- 44 Отсортировать по убыванию все отрицательные элементы массива.
- 45 Отсортировать первую половину массива по возрастанию, а вторую по убыванию значений элементов.
- 46 Проверить наличие упорядоченности элементов массива по возрастанию или по убыванию.